Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 613
1.
J Agric Food Chem ; 2024 May 07.
Article En | MEDLINE | ID: mdl-38714361

4-Hydroxyphenylpyruvate dioxygenase (HPPD) is a crucial target enzyme in albino herbicides. The inhibition of HPPD activity interferes with the synthesis of carotenoids, blocking photosynthesis and resulting in bleaching and necrosis. To develop herbicides with excellent activity, a series of 3-hydroxy-2-(6-substituted phenoxynicotinoyl)-2-cyclohexen-1-one derivatives were designed via active substructure combination. The title compounds were characterized via infrared spectroscopy, 1H and 13C nuclear magnetic resonance spectroscopies, and high-resolution mass spectrometry. The structure of compound III-17 was confirmed via single-crystal X-ray diffraction. Preliminary tests demonstrated that some compounds had good herbicidal activity. Crop safety tests revealed that compound III-29 was safer than the commercial herbicide mesotrione in wheat and peanuts. Moreover, the compound exhibited the highest inhibitory activity against Arabidopsis thaliana HPPD (AtHPPD), with a half-maximal inhibitory concentration of 0.19 µM, demonstrating superior activity compared with mesotrione (0.28 µM) in vitro. A three-dimensional quantitative structure-activity relationship study revealed that the introduction of smaller groups to the 5-position of cyclohexanedione and negative charges to the 3-position of the benzene ring enhanced the herbicidal activity. A molecular structure comparison demonstrated that compound III-29 was beneficial to plant absorption and conduction. Molecular docking and molecular dynamics simulations further verified the stability of the complex formed by compound III-29 and AtHPPD. Thus, this study may provide insights into the development of green and efficient herbicides.

2.
Sci Total Environ ; 932: 172929, 2024 May 03.
Article En | MEDLINE | ID: mdl-38703852

Firework (FW) events occur during various festivals worldwide and substantially negatively influence both air quality and human health. However, the effects of FWs on the chemical properties and formation of organic aerosols are far from clear. In this study, fine particulate matter (PM2.5) samples were collected in a suburban area in Qingdao, China during the Chinese Spring Festival. The concentrations of chemical species (especially carbonaceous components) in PM2.5 were measured using a combination of several state-of-the-art techniques. Our results showed that mass concentrations of water-soluble sulfate, potassium and chloride ions, and organic carbon drastically increased and became the predominant components in PM2.5 during FW events. Correspondingly, both the number and fractional contributions of sulfur (S)-containing subgroups (e.g., CHOS and CHONS compounds) and some chlorine (Cl)-containing organic (e.g., CHOSCl and CHONSCl) compounds identified using ultrahigh-resolution Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) increased. The S- and Cl-containing compounds unique to the FW display period were identified, and their chemical characterization, sources, and formation mechanisms were elucidated by combining FT-ICR MS and quantum chemical calculations. Our results suggest that FW emissions play notable roles in both primary and secondary organic aerosol formation, especially for CHOS- and Cl-containing organic compounds.

3.
Cardiovasc Diabetol ; 23(1): 128, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38622690

BACKGROUND: Compelling evidence suggests that calcium/phosphorus homeostasis-related parameters may be linked to diabetes mellitus and cardiovascular events. However, few studies have investigated the association of fibroblast growth factor 23 (FGF23), α-klotho and FGF23/α-klotho ratio with atherosclerosis in patients with type 2 diabetes mellitus (T2DM). OBJECTIVE: This study was designed to evaluate whether FGF23, α-klotho and FGF23/α-klotho ratio are associated with T2DM and further to explore the relationships between these three factors and atherosclerosis in Chinese patients with T2DM. METHODS: Serum FGF23 and α-klotho levels were measured via an enzyme-linked immunosorbent assay (ELISA) kit, and the carotid intima-media thickness (CIMT) was assessed via high-resolution color Doppler ultrasonography. The associations of serum FGF23, α-klotho and FGF23/α-klotho ratio with atherosclerosis in T2DM patients were evaluated using multivariable logistic regression models. RESULTS: This cross-sectional study involved 403 subjects (207 with T2DM and 196 without T2DM), 41.7% of the patients had atherosclerosis, and 67.2% of the carotid intima were thickened to a thickness greater than 0.9 mm. Compared with those in the lowest tertile, higher tertiles of FGF23 levels and FGF23/α-klotho ratio were positively associated with T2DM after adjusting for covariates, and serum α-klotho concentration was inversely correlated with T2DM (all P values < 0.01). Moreover, elevated serum FGF23 levels and FGF23/α-klotho ratio were positively associated with CIMT and carotid atherosclerosis in T2DM patients (all P values < 0.01). Further spline analysis similarly revealed linear dose‒response relationship (all P values < 0.01). And there was still significant differences in CIMT and carotid atherosclerosis between the highest group of α-klotho and the reference group in T2DM patients (P values = 0.05). CONCLUSIONS: T2DM was positively linearly related to serum FGF23 concentration and FGF23/α-klotho ratio, and negatively correlated with serum α-klotho concentration. Furthermore, both FGF23 and FGF23/α-klotho ratio were positively correlated with CIMT and atherosclerosis in T2DM patients, while α-klotho was inversely correlated with both CIMT and atherosclerosis, although the associations were not completely significant. Prospective exploration and potential mechanisms underlying these associations remain to be further elucidated.


Atherosclerosis , Carotid Artery Diseases , Diabetes Mellitus, Type 2 , Humans , Carotid Artery Diseases/diagnostic imaging , Carotid Artery Diseases/etiology , Carotid Intima-Media Thickness , Cross-Sectional Studies , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnosis , Prospective Studies , Risk Factors
4.
J Hazard Mater ; 470: 134161, 2024 May 15.
Article En | MEDLINE | ID: mdl-38569338

BACKGROUND: Exposure to PM2.5 has been linked to neurodegenerative diseases, with limited understanding of constituent-specific contributions. OBJECTIVES: To explore the associations between long-term exposure to PM2.5 constituents and neurodegenerative diseases. METHODS: We recruited 148,274 individuals aged ≥ 60 from four cities in the Pearl River Delta region, China (2020 to 2021). We calculated twenty-year average air pollutant concentrations (PM2.5 mass, black carbon (BC), organic matter (OM), ammonium (NH4+), nitrate (NO3-) and sulfate (SO42-)) at the individuals' home addresses. Neurodegenerative diseases were determined by self-reported doctor-diagnosed Alzheimer's disease (AD) and Parkinson's disease (PD). Generalized linear mixed models were employed to explore associations between pollutants and neurodegenerative disease prevalence. RESULTS: PM2.5 and all five constituents were significantly associated with a higher prevalence of AD and PD. The observed associations generally exhibited a non-linear pattern. For example, compared with the lowest quartile, higher quartiles of BC were associated with greater odds for AD prevalence (i.e., the adjusted odds ratios were 1.81; 95% CI, 1.45-2.27; 1.78; 95% CI, 1.37-2.32; and 1.99; 95% CI, 1.54-2.57 for the second, third, and fourth quartiles, respectively). CONCLUSIONS: Long-term exposure to PM2.5 and its constituents, particularly combustion-related BC, OM, and SO42-, was significantly associated with higher prevalence of AD and PD in Chinese individuals. ENVIRONMENTAL IMPLICATION: PM2.5 is a routinely regulated mixture of multiple hazardous constituents that can lead to diverse adverse health outcomes. However, current evidence on the specific contributions of PM2.5 constituents to health effects is scarce. This study firstly investigated the association between PM2.5 constituents and neurodegenerative diseases in the moderately to highly polluted Pearl River Delta region in China, and identified hazardous constituents within PM2.5 that have significant impacts. This study provides important implications for the development of targeted PM2.5 prevention and control policies to reduce specific hazardous PM2.5 constituents.


Air Pollutants , Environmental Exposure , Particulate Matter , Particulate Matter/analysis , China/epidemiology , Humans , Aged , Air Pollutants/analysis , Environmental Exposure/adverse effects , Female , Male , Middle Aged , Neurodegenerative Diseases/epidemiology , Neurodegenerative Diseases/chemically induced , Alzheimer Disease/epidemiology , Alzheimer Disease/chemically induced , Aged, 80 and over , Parkinson Disease/epidemiology , Parkinson Disease/etiology , Air Pollution/adverse effects , Air Pollution/analysis , Prevalence
5.
Food Chem ; 448: 139073, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38574713

This study reported for the first time that Ascorbic acid (AA) could appreciably boost the efficiency of Octyl gallate (OG)-mediated photodynamic inactivation (PDI) on Escherichia coli and Staphylococcus aureus in planktonic and biofilm states. The combination of OG (0.075 mM) and AA (200 mM) with 420 nm blue light (212 mW/cm2) led to a >6 Log killing within only 5 min for E. coli and S. aureus and rapid eradication of biofilms. The mechanism of action appears to be the generation of highly toxic hydroxyl radicals (•OH) via photochemical pathways. OG was exposed to BL irradiation to generate various reactive oxygen radicals (ROS) and the addition of AA could transform singlet oxygen (1O2) into hydrogen peroxide (H2O2), which could further react with AA to generate enormous •OH. These ROS jeopardized bacteria and biofilms by nonspecifically attacking various biomacromolecules. Overall, this PDI strategy provides a powerful microbiological decontamination modality to guarantee safe food products.


Ascorbic Acid , Biofilms , Escherichia coli , Gallic Acid , Gallic Acid/analogs & derivatives , Light , Staphylococcus aureus , Biofilms/drug effects , Ascorbic Acid/pharmacology , Ascorbic Acid/chemistry , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Gallic Acid/pharmacology , Gallic Acid/chemistry , Escherichia coli/drug effects , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Viability/drug effects , Microbial Viability/radiation effects , Reactive Oxygen Species/metabolism , Plankton/drug effects , Plankton/radiation effects , Blue Light
6.
Front Biosci (Landmark Ed) ; 29(4): 143, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38682186

Coenzyme A (CoA) functions as a crucial carrier of acyl groups within cells, playing a fundamental role in regulating acyl transfer reactions and participating in cellular metabolic processes. As the principal substrate and cofactor engaged in diverse metabolic reactions, CoA and its derivatives exert central influence over various physiological processes, primarily modulating lipid and ketone metabolism, as well as protein modification. This paper presents a comprehensive review of the molecular mechanisms by which CoA influences the onset and progression of cancer, cardiovascular disease (CVD), neurodegenerative disorders, and other illnesses. The main focal points include the following. (1) In cancer, enzymes such as acetyl-CoA synthetase 2, ATP citrate lyase, and acetyl-CoA carboxylase regulate lipid synthesis and energy metabolism by modulating acetyl-CoA levels. (2) In CVD, the effects of enzymes such as stearoyl-CoA desaturase-1, 3-hydroxy-3-methylglutaryl-CoA (HMGC) synthase 2, and HMGC reductase on the formation and advancement of these diseases are elucidated by their regulation of CoA metabolism across multiple organs. (3) In neurodegenerative disorders, the significance of CoA in maintaining cholesterol homeostasis in the brain and its implications on the development of such disorders are thoroughly discussed. The metabolic processes involving CoA and its derivatives span all physiological aspects within cells, playing a critical role in the onset and progression of various diseases. Elucidating the role of CoA in these conditions yields important insights that can serve as valuable references and guidance for disease diagnosis, treatment, and drug development.


Cardiovascular Diseases , Coenzyme A , Neoplasms , Neurodegenerative Diseases , Humans , Neurodegenerative Diseases/metabolism , Neoplasms/metabolism , Coenzyme A/metabolism , Cardiovascular Diseases/metabolism , Animals
7.
Sci Rep ; 14(1): 8005, 2024 04 05.
Article En | MEDLINE | ID: mdl-38580695

The association between high blood pressure and fracture showed obvious discrepancies and were mostly between hypertension with future fracture, but rarely between fracture and incident hypertension. The present study aims to investigate the associations of hypertension with future fracture, and fracture with incident hypertension. We included adult participants from the China Health and Nutrition Survey (CHNS) prospective cohort in 1997-2015 (N = 10,227), 2000-2015 (N = 10,547), 2004-2015 (N = 10,909), and 2006-2015 (N = 11,121) (baseline in 1997, 2000, 2004, 2006 respectively and outcome in 2015). Cox proportional hazards models were used to estimate hazard ratios (HRs) and 95% CIs. In the analysis of the association between hypertension and future fracture, the adjusted HRs (95% CIs) were 1.34 (0.95-1.90) in 1997-2015, 1.40 (1.04-1.88) in 2000-2015, 1.32 (0.98-1.78) in 2004-2015, and 1.38 (1.01-1.88) in 2006-2015. In the analysis of the association between fracture and incident hypertension, the adjusted HRs (95% CIs) were 1.28 (0.96-1.72) in 1997-2015, 1.18 (0.94-1.49) in 2000-2015, 1.12 (0.89-1.40) in 2004-2015, and 1.09 (0.85-1.38) in 2006-2015. The present study showed that hypertension history was associated with increased risk of future fracture, but not vice versa.


Fractures, Bone , Hypertension , Adult , Humans , Prospective Studies , Risk Factors , Health Surveys , Blood Pressure , Proportional Hazards Models
8.
Adv Healthc Mater ; : e2400849, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38687974

Hydrogels containing chondrocytes have exhibited excellent potential in regenerating hyaline cartilage. However, chondrocytes are vulnerable to dedifferentiation during in vitro culture, leading to fibrosis and mechanical degradation of newly formed cartilage. It is proposed to modulate cartilage formation via the developed chondrocyte pericellular matrix (PCM) -like scaffolds for the first time, in which the S, M, and L-sized scaffolds are fabricated by femtosecond laser maskless optical projection lithography (FL-MOPL) of bovine serum albumin-glyceryl methacrylate hydrogel. Chondrocytes on the M PCM-like scaffold can maintain round morphology and synthesize extracellular matrix (ECM) to induce regeneration of hyaline cartilage microtissues by geometrical restriction. A series of M PCM-like scaffolds is fabricated with different stiffness and those with a high Young's modulus are more effective in maintaining the chondrocyte phenotype. The proposed PCM-like scaffolds are effective in modulating cartilage formation influenced by pore size, depth, and stiffness, which will pave the way for a better understanding of the geometric cues of mechanotransduction interactions in regulating cell fate and open up new avenues for tissue engineering.

9.
J Antimicrob Chemother ; 79(5): 1069-1080, 2024 May 02.
Article En | MEDLINE | ID: mdl-38526879

OBJECTIVES: The emergence and expansion of carbapenem-resistant Klebsiella pneumoniae infections is a concern due to the lack of 'first-line' antibiotic treatment options. The ceftazidime/avibactam is an important clinical treatment for carbapenem-resistant K. pneumoniae infections but there is an increasing number of cases of treatment failure and drug resistance. Therefore, a potential solution is combination therapies that result in synergistic activity against K. pneumoniae carbapenemase: producing K. pneumoniae (KPC-Kp) isolates and preventing the emergence of KPC mutants resistant to ceftazidime/avibactam are needed in lieu of novel antibiotics. METHODS: To evaluate their synergistic activity, antibiotic combinations were tested against 26 KPC-Kp strains. Antibiotic resistance profiles, molecular characteristics and virulence genes were investigated by susceptibility testing and whole-genome sequencing. Antibiotic synergy was evaluated by in vitro chequerboard experiments, time-killing curves and dose-response assays. The mouse thigh model was used to confirm antibiotic combination activities in vivo. Additionally, antibiotic combinations were evaluated for their ability to prevent the emergence of ceftazidime/avibactam resistant mutations of blaKPC. RESULTS: The combination of ceftazidime/avibactam plus meropenem showed remarkable synergistic activity against 26 strains and restored susceptibility to both the partnering antibiotics. The significant therapeutic effect of ceftazidime/avibactam combined with meropenem was also confirmed in the mouse model and bacterial loads in the thigh muscle of the combination groups were significantly reduced. Furthermore, ceftazidime/avibactam plus meropenem showed significant activity in preventing the occurrence of resistance mutations. CONCLUSIONS: Our results indicated that the combination of ceftazidime/avibactam plus meropenem offers viable therapeutic alternatives in treating serious infections due to KPC-Kp.


Anti-Bacterial Agents , Azabicyclo Compounds , Bacterial Proteins , Ceftazidime , Disease Models, Animal , Drug Combinations , Drug Synergism , Klebsiella Infections , Klebsiella pneumoniae , Meropenem , Microbial Sensitivity Tests , beta-Lactamases , Animals , Ceftazidime/pharmacology , Ceftazidime/therapeutic use , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Azabicyclo Compounds/pharmacology , Azabicyclo Compounds/therapeutic use , Meropenem/pharmacology , Meropenem/administration & dosage , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Mice , beta-Lactamases/genetics , Bacterial Proteins/genetics , Female , Whole Genome Sequencing , Drug Therapy, Combination , Carbapenem-Resistant Enterobacteriaceae/drug effects , Carbapenem-Resistant Enterobacteriaceae/genetics
10.
BMC Cancer ; 24(1): 362, 2024 Mar 21.
Article En | MEDLINE | ID: mdl-38515096

BACKGROUND: Predicting short-term efficacy and intracranial progression-free survival (iPFS) in epidermal growth factor receptor gene mutated (EGFR-mutated) lung adenocarcinoma patients with brain metastases who receive third-generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) therapy was of great significance for individualized treatment. We aimed to construct and validate nomograms based on clinical characteristics and magnetic resonance imaging (MRI) radiomics for predicting short-term efficacy and intracranial progression free survival (iPFS) of third-generation EGFR-TKI in EGFR-mutated lung adenocarcinoma patients with brain metastases. METHODS: One hundred ninety-four EGFR-mutated lung adenocarcinoma patients with brain metastases who received third-generation EGFR-TKI treatment were included in this study from January 1, 2017 to March 1, 2023. Patients were randomly divided into training cohort and validation cohort in a ratio of 5:3. Radiomics features extracted from brain MRI were screened by least absolute shrinkage and selection operator (LASSO) regression. Logistic regression analysis and Cox proportional hazards regression analysis were used to screen clinical risk factors. Single clinical (C), single radiomics (R), and combined (C + R) nomograms were constructed in short-term efficacy predicting model and iPFS predicting model, respectively. Prediction effectiveness of nomograms were evaluated by calibration curves, Harrell's concordance index (C-index), receiver operating characteristic (ROC) curves and decision curve analysis (DCA). Kaplan-Meier analysis was used to compare the iPFS of high and low iPFS rad-score patients in the predictive iPFS R model and to compare the iPFS of high-risk and low-risk patients in the predictive iPFS C + R model. RESULTS: Overall response rate (ORR) was 71.1%, disease control rate (DCR) was 91.8% and median iPFS was 12.67 months (7.88-20.26, interquartile range [IQR]). There were significant differences in iPFS between patients with high and low iPFS rad-scores, as well as between high-risk and low-risk patients. In short-term efficacy model, the C-indexes of C + R nomograms in training cohort and validation cohort were 0.867 (0.835-0.900, 95%CI) and 0.803 (0.753-0.854, 95%CI), while in iPFS model, the C-indexes were 0.901 (0.874-0.929, 95%CI) and 0.753 (0.713-0.793, 95%CI). CONCLUSIONS: The third-generation EGFR-TKI showed significant efficacy in EGFR-mutated lung adenocarcinoma patients with brain metastases, and the combined line plot of C + R can be utilized to predict short-term efficacy and iPFS.


Adenocarcinoma of Lung , Brain Neoplasms , Lung Neoplasms , Humans , Genes, erbB-1 , Nomograms , Progression-Free Survival , Radiomics , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Adenocarcinoma of Lung/diagnostic imaging , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Magnetic Resonance Imaging , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , ErbB Receptors/genetics , Retrospective Studies
11.
Chemosphere ; 353: 141635, 2024 Apr.
Article En | MEDLINE | ID: mdl-38447897

The performance of bacterial strains in executing degradative functions under the coexistence of heavy metals/heavy metal-like elements and organic contaminants is understudied. In this study, we isolated a fluorene-degrading bacterium, highly arsenic-resistant, designated as strain 2021, from contaminated soil at the abandoned site of an old coking plant. It was identified as a member of the genus Rhodococcus sp. strain 2021 exhibited efficient fluorene-degrading ability under optimal conditions of 400 mg/L fluorene, 30 °C, pH 7.0, and 250 mg/L trivalent arsenic. It was noted that the addition of arsenic could promote the growth of strain 2021 and improve the degradation of fluorene - a phenomenon that has not been described yet. The results further indicated that strain 2021 can oxidize As3+ to As5+; here, approximately 13.1% of As3+ was converted to As5+ after aerobic cultivation for 8 days at 30 °C. The addition of arsenic could greatly up-regulate the expression of arsR/A/B/C/D and pcaG/H gene clusters involved in arsenic resistance and aromatic hydrocarbon degradation; it also aided in maintaining the continuously high expression of cstA that codes for carbon starvation protein and prmA/B that codes for monooxygenase. These results suggest that strain 2021 holds great potential for the bioremediation of environments contaminated by a combination of arsenic and polycyclic aromatic hydrocarbons. This study provides new insights into the interactions among microbes, as well as inorganic and organic pollutants.


Arsenic , Polycyclic Aromatic Hydrocarbons , Rhodococcus , Soil Pollutants , Arsenic/metabolism , Rhodococcus/genetics , Rhodococcus/metabolism , Polycyclic Aromatic Hydrocarbons/metabolism , Fluorenes/metabolism , Biodegradation, Environmental , Soil Pollutants/metabolism , Soil Microbiology
12.
ACS Appl Bio Mater ; 7(4): 2594-2603, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38523342

Repairing articular cartilage damage is challenging due to its low regenerative capacity. In vitro, cartilage regeneration is a potential strategy for the functional reconstruction of cartilage defects. A hydrogel is an advanced material for mimicking the extracellular matrix (ECM) due to its hydrophilicity and biocompatibility, which is known as an ideal scaffold for cartilage regeneration. However, chondrocyte culture in vitro tends to dedifferentiate, leading to fibrosis and reduced mechanical properties of the newly formed cartilage tissue. Therefore, it is necessary to understand the mechanism of modulating the chondrocytes' morphology. In this study, we synthesize photo-cross-linkable bovine serum albumin-glycidyl methacrylate (BSA-GMA) with 65% methacrylation. The scaffolds are found to be suitable for chondrocyte growth, which are fabricated by homemade femtosecond laser maskless optical projection lithography (FL-MOPL). The large-area chondrocyte scaffolds have holes with interior angles of triangle (T), quadrilateral (Q), pentagon (P), hexagonal (H), and round (R). The FL-MOPL polymerization mechanism, swelling, degradation, and biocompatibility of the BSA-GMA hydrogel have been investigated. Furthermore, cytoskeleton and nucleus staining reveals that the R-scaffold with larger interior angle is more effective in maintaining chondrocyte morphology and preventing dedifferentiation. The scaffold's ability to maintain the chondrocytes' morphology improves as its shape matches that of the chondrocytes. These results suggest that the BSA-GMA scaffold is a suitable candidate for preventing chondrocyte differentiation and supporting cartilage tissue repair and regeneration. The proposed method for chondrocyte in vitro culture by developing biocompatible materials and flexible fabrication techniques would broaden the potential application of chondrocyte transplants as a viable treatment for cartilage-related diseases.


Cartilage, Articular , Chondrocytes , Epoxy Compounds , Methacrylates , Chondrocytes/metabolism , Serum Albumin, Bovine/pharmacology , Serum Albumin, Bovine/metabolism , Tissue Scaffolds , Hydrogels/pharmacology , Hydrogels/metabolism , Cartilage, Articular/metabolism
13.
Am J Obstet Gynecol ; 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38432418

OBJECTIVE: This study aimed to systematically review objective and subjective success and surgical outcomes of suburethral sling surgery for female patients with stress or mixed urinary incontinence using synthetic vs nonsynthetic material with corresponding surgical approaches (retropubic or transobturator). DATA SOURCES: We systematically searched Medline, Embase, EBM Reviews, ClinicalTrials.gov, and Web of Science Core Collection using standardized Medical Subject Headings (MeSH) without date restrictions (PROSPERO-registered). We double-screened studies and used backward citation chaining. STUDY ELIGIBILITY CRITERIA: We included peer-reviewed randomized controlled trials and prospective or retrospective comparative studies examining outcomes of retropubic or transobturator synthetic vs nonsynthetic (autologous, allograft, or xenograft) slings for female stress or mixed urinary incontinence, with available English or French full texts. We excluded minislings (single insertion point). We allowed slings for recurrent stress or mixed urinary incontinence, and slings concomitant with prolapse surgery, with at least 6 weeks of postoperative follow-up. We excluded systematic reviews, meta-analyses, review studies, case-control studies, case reports, studies that did not describe surgical approach or material, and studies of combination slings. METHODS: We evaluated study quality using RoB, the Cochrane risk-of-bias tool for randomized controlled trials, and the Newcastle-Ottawa scale for observational studies. We used pooled relative risk with 95% confidence intervals to estimate the effect of sling material type on each outcome through meta-analysis and meta-regression, as appropriate. RESULTS: We screened 4341 abstracts, assessed 104 full texts, and retained 35 articles (30 separate studies). For retropubic synthetic vs nonsynthetic slings, there was no difference in the number of objectively or subjectively continent patients. The rates of reoperation for stress urinary incontinence and overall were higher with nonautologous retropubic slings than with synthetic slings. Compared with autologous slings, retropubic synthetic slings were associated with higher subjective continence in populations with ≥25% recurrent stress urinary incontinence (relative risk, 1.27; 95% confidence interval, 1.12-1.43). There were no differences in continence between transobturator synthetic and nonsynthetic slings. Subjective satisfaction was better in the transobturator synthetic group than in the autologous sling group (relative risk, 1.42; 95% confidence interval, 1.03-1.94). CONCLUSION: Synthetic and nonsynthetic slings have comparable objective and subjective success, with synthetic materials generally showing better operative outcomes and fewer complications.

14.
Int J Mol Sci ; 25(3)2024 Jan 30.
Article En | MEDLINE | ID: mdl-38338982

We had previously investigated the expression and functional role of C-X-C Motif Chemokine Ligand 12 (CXCL12) during the hair cycle progression. CXCL12 was highly expressed in stromal cells such as dermal fibroblasts (DFs) and inhibition of CXCL12 increased hair growth. Therefore, we further investigated whether a CXCL12 neutralizing antibody (αCXCL12) is effective for androgenic alopecia (AGA) and alopecia areata (AA) and studied the underlying molecular mechanism for treating these diseases. In the AGA model, CXCL12 is highly expressed in DFs. Subcutaneous (s.c.) injection of αCXCL12 significantly induced hair growth in AGA mice, and treatment with αCXCL12 attenuated the androgen-induced hair damage in hair organ culture. Androgens increased the secretion of CXCL12 from DFs through the androgen receptor (AR). Secreted CXCL12 from DFs increased the expression of the AR and C-X-C Motif Chemokine Receptor 4 (CXCR4) in dermal papilla cells (DPCs), which induced hair loss in AGA. Likewise, CXCL12 expression is increased in AA mice, while s.c. injection of αCXCL12 significantly inhibited hair loss in AA mice and reduced the number of CD8+, MHC-I+, and MHC-II+ cells in the skin. In addition, injection of αCXCL12 also prevented the onset of AA and reduced the number of CD8+ cells. Interferon-γ (IFNγ) treatment increased the secretion of CXCL12 from DFs through the signal transducer and activator of transcription 3 (STAT3) pathway, and αCXCL12 treatment protected the hair follicle from IFNγ in hair organ culture. Collectively, these results indicate that CXCL12 is involved in the progression of AGA and AA and antibody therapy for CXCL12 is promising for hair loss treatment.


Alopecia Areata , Antibodies, Neutralizing , Animals , Mice , Alopecia/metabolism , Alopecia Areata/drug therapy , Alopecia Areata/metabolism , Androgens/metabolism , Antibodies, Neutralizing/pharmacology , Antibodies, Neutralizing/metabolism , Hair , Hair Follicle/metabolism , Skin/metabolism , Chemokine CXCL12/immunology
15.
AMB Express ; 14(1): 15, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38300478

Bacillus thuringiensis Cry2Ab toxin was a widely used bioinsecticide to control lepidopteran pests all over the world. In the present study, engineering of Bacillus thuringiensis Cry2Ab toxin was performed for improved insecticidal activity using site-specific saturation mutation. Variants L183I were screened with lower LC50 (0.129 µg/cm2) against P. xylostella when compared to wild-type Cry2Ab (0.267 µg/cm2). To investigate the molecular mechanism behind the enhanced activity of variant L183I, the activation, oligomerization and pore-formation activities of L183I were evaluated, using wild-type Cry2Ab as a control. The results demonstrated that the proteolytic activation of L183I was the same as that of wild-type Cry2Ab. However, variant L183I displayed higher oligomerization and pore-formation activities, which was consistence with its increased insecticidal activity. The current study demonstrated that the insecticidal activity of Cry2Ab toxin could be assessed using oligomerization and pore-formation activities, and the screened variant L183I with improved activity might contribute to Cry2Ab toxin's future application.

16.
Nat Commun ; 15(1): 1645, 2024 Feb 22.
Article En | MEDLINE | ID: mdl-38388556

The presence of oral microbes in extra-oral sites is linked to gastrointestinal cancers. However, their potential ectopically colonization in the nasopharynx and impact on local cancer development remains uncertain. Our study involving paired nasopharyngeal-oral microbial samples from nasopharyngeal carcinoma (NPC) patients and controls unveils an aberrant oral-to-nasopharyngeal microbial translocation associated with increased NPC risk (OR = 4.51, P = 0.012). Thirteen species are classified as oral-translocated and enriched in NPC patients. Among these, Fusobacterium nucleatum and Prevotella intermedia are validated through culturomics and clonal strain identification. Nasopharyngeal biopsy meta-transcriptomes confirm these microbes within tumors, influencing local microenvironment and cytokine response. These microbes correlate significantly with the Epstein-Barr virus (EBV) loads in the nasopharynx, exhibiting an increased dose-response relationship. Collectively, our study identifies oral microbes migrating to the nasopharynx, infiltrating tumors, impacting microenvironments and linking with EBV infection. These results enhance our understanding of abnormal microbial communication and their roles in carcinogenesis.


Epstein-Barr Virus Infections , Nasopharyngeal Neoplasms , Humans , Nasopharyngeal Carcinoma/complications , Herpesvirus 4, Human/genetics , Nasopharyngeal Neoplasms/pathology , Translocation, Genetic , Mouth , Tumor Microenvironment
17.
Life Sci ; 339: 122422, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38224815

As a potent pro-angiogenic factor, the role of CD93 in the prognosis and therapeutic outcomes of lung squamous cell carcinoma (LUSC) merits exploration. In this study, we systematically collected transcriptomic, genomic, and clinical data from various public databases, as well as pathological images from hospital-operated patients. Employing statistical analysis software like R (Version 4.2.2) and GraphPad (Version 8.0), we conducted comprehensive analyses of multi-omics data. The results revealed elevated CD93 expression in LUSC tissues, closely associated with various cancer-related pathways. High CD93 expression indicated advanced clinical stage and poorer prognosis. Furthermore, CD93 contributed to resistance against chemotherapy and immunotherapy by enhancing tumor cell stemness, reducing immune cell infiltration, and inducing T cell exhaustion. Patients with low CD93 expression exhibited higher response rates to both chemotherapy and immunotherapy. Immunohistochemistry validated the significance of CD93 in LUSC. CD93 emerges as a biomarker signaling unfavorable prognosis and influencing therapeutic outcomes, suggesting a potential LUSC treatment avenue.


Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell , Lung Neoplasms , Humans , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/genetics , Lung , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Prognosis
18.
Tissue Eng Part B Rev ; 30(2): 176-197, 2024 Apr.
Article En | MEDLINE | ID: mdl-37603497

The potential of urine-derived stem cells (USCs) for tissue engineering and regenerative medicine has attracted much attention during the last few decades. However, it has been suggested that the effects of the USCs may be endowed by their paracrine extracellular vesicles (EVs) rather than their differentiation. Compared with the USCs, the USC-EVs can cross the barriers more easily and safely, and their inclusions may mediate intercellular communication and promote the tissue repair. This article has summarized the current knowledge and applications about the USC-EVs in tissue engineering and regenerative medicine, and discussed the prospects and challenges for using them as an alternative to cell therapy. Impact statement Urine-derived stem cells (USCs) represent a newly discovered type of stem cells, and studies have proved that the beneficial effects of the USCs may be manifested through their paracrine extracellular vesicles (EVs) rather than through their own differentiation, which opens up new avenues for tissue engineering and regenerative medicine strategies. Therefore, this review aims to summarize the latest research progress and potential clinical applications of the USC-EVs, highlighting the promising potential of the USC-EVs as a therapeutic option in kidney regeneration, genital regeneration, nerve regeneration, bone and cartilage regeneration, and wound healing.


Extracellular Vesicles , Regenerative Medicine , Humans , Tissue Engineering , Kidney , Regeneration , Stem Cells
19.
Sci Total Environ ; 912: 169158, 2024 Feb 20.
Article En | MEDLINE | ID: mdl-38092217

Anthropogenic emissions are recognized as significant contributors to atmospheric soluble iron (Fe) in recent years, which may affect marine primary productivity, especially in Fe-limited areas. However, the contribution of different emission sources to Fe in marine aerosol has been primarily estimated by modeling approaches. Quantifying anthropogenic Fe based on field measurements remains a great challenge. In this study, online multi-element measurements and Positive Matrix Factorization (PMF) were combined for the first time to quantify sources of atmospheric Fe and soluble Fe in the Northwest Pacific during a cruise in spring 2015. Fe concentration in 624 atmospheric PM2.5 samples measured online was 74.58 ± 90.87 ng/m3. The PMF results showed anthropogenic activities, including industrial coal combustion, biomass burning, and maritime transport, were important in this region, contributing 31.4 % of atmospheric Fe on average. In addition, anthropogenic Fe concentration resolved by PMF was comparable to the simulation results of the CMAQ (Community Multiscale Air Quality) and GEOS-Chem (Goddard Earth Observing System-Chemical transport) models, with better correlation to CMAQ (r = 0.76) than GEOS-Chem (r = 0.26). This study developed a new method to estimate atmospheric soluble Fe, which integrates Fe source apportionment results and Fe solubility from different sources. Soluble Fe concentration was estimated as 3.93 ± 5.14 ng/m3, of which 87.0 % was attributed to anthropogenic emissions. Notably, ship emission alone contributed 27.5 % of soluble Fe, though its contribution to total Fe was only 2.2 %. Finally, the total deposition fluxes of atmospheric Fe (37.11 ± 38.43 µg/m2/day) and soluble Fe (1.85 ± 2.13 µg/m2/day) were estimated. This study developed a new methodology for quantifying contribution of anthropogenic emissions to Fe in marine aerosol, which could greatly help the assessment of impacts of human activities on marine environment.

20.
Biochem Genet ; 62(2): 1070-1086, 2024 Apr.
Article En | MEDLINE | ID: mdl-37530910

Neovascularization is the hallmark of retinopathy of prematurity (ROP). Early growth response 1 (EGR1) has been reported as an angiogenic factor. This study was conducted to probe the regulatory mechanism of EGR1 in neovascularization in ROP model mice. The ROP mouse model was established, followed by determination of EGR1 expression and assessment of neovascularization [vascular endothelial growth factor-A (VEGF-A) and pigment epithelium-derived factor (PEDF)]. Retinal vascular endothelial cells were cultured and treated with hypoxia, followed by the tube formation assay. The state of oxygen induction was assessed by real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot assay to determine hypoxia-inducible factor 1-alpha (HIF-1A). The levels of microRNA (miRNA)-182-5p and ephrin-A5 (EFNA5) in tissues and cells were determined by RT-qPCR. Chromatin immunoprecipitation and dual-luciferase assay were used to validate gene interaction. EGR1 and EFNA5 were upregulated in the retina of ROP mice while miR-182-5p was downregulated. EGR1 knockdown decreased VEGF-A and HIF-1A expression and increased PEDF expression in the retina of ROP mice. In vitro, EGR1 knockdown also reduced neovascularization. EGR1 binding to the miR-182-5p promoter inhibited miR-182-5p transcription and further promoted EFNA5 transcription. miR-182-5p downregulation or EFNA5 overexpression averted the inhibition of neovascularization caused by EGR1 downregulation. Overall, EGR1 bound to the miR-182-5p promoter to inhibit miR-182-5p transcription and further promoted EFNA5 transcription, thus promoting retinal neovascularization in ROP mice.

...